How to Optimize Your Project With In-Place Recycling?

Western States

Regional In-Place Recycling Conference September 11, 2012

Sohila Bemanian, PE Parsons Transportation Group

Why In-Place recycling? Meets the 3E Challenge

Economics

Engineering

Timing of Rehabilitation Techniques

(The Right Project, at The Right Time, and The Right Strategy)

Pavement Preservation & Rehabilitation Tool Box

PAVEMENT CONDITION

PAVEMENT LIFE

What is a good strategy for surface raveling?

www.betterroads.com

What is a good strategy for medium and wide transverse and block cracking?

What is a good strategy for alligator cracking?

Project Selection Criteria

- 1. Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading
- 2. Environmental condition
- 3. Roadway geometry
- Project site consideration

Additional Factors to Consider

(continued)

5. Initial funding constraint
6. Life-cycle cost based on longterm performance
7. Traffic Control

1. Existing Pavement Evaluation

Engineering Requirements

Subsurface Investigation: Coring to determine pavement thickness

- fabric Joe Peterson, Caltrans, 2008 In-Place Recycling Presentation

Pavement Thickness Design

- > Use either MEPDG or 1993-AASHTO Design Guide
- > Use structural number 0.28-0.35 for CIR
- > MR for CIR varies from low 200's to 1 M
- > Do not make the recycle d material too stiff
- > Calculate projected traffic loading for the design life

Structural Layer Coefficient

FDR Method	Minimum Thickness of Riding Surface	Typical Structural Coefficient	
Mechanical	2" HMA	0.10 - 0.12	
Bituminous	Surface Treatment or Structural HMA	0.20 - 0.28	
Cement	Surface Treatment or Structural HMA	0.15 – 0.20	

Mike Voth, FHWA, 2008 In-Place Recycling Presentation

Mix Design Process

1) RAP: Cores or Grindings from Project	Cores or Milling are crushed to passing 1"
2) Mixing	3 emulsion contents and H20 content are made
3) Compaction	Use Gyratory Compactor
4) Curing of Specimens	48 hours
5) Cured Specimens Measurements	2 sets: dry and soaked
6) Mix Design Selection	Determine optimum emulsion content

Mix Design Process

Project Selection Criteria

- 1. Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading
- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site
 consideration

2. Environmental Condition

(Climate conditions must be considered when selecting in-place recycling)

Factors to consider Good drainage is a MUST > Type and thickness of the wearing surface (slurry seal, double chip seal, hot mix overlay, and friction course)

> PG grade binder

NCHRP Synthesis 40-13

Ranking of climates that can influence the choice of inplace recycling processes

Climate	HIR	CIR	FDR
Cold/Wet	Fair	Good	Very Good
Hot/Wet	Good	Good	Very Good
Cold/Dry	Good	Very Good	Very Good
Hot/Dry	Very Good	Very Good	Very Good

Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading
- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site
 consideration

3. Roadway Geometry

> Profile grade > Drainage ditches Guard rail > Overhead Cross slope

Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading
- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site consideration

4. Project Site Consideration

Contractors availability Contact ARRA - <u>www.arra.org</u>

> Project length

>At least 4 miles for HIR and CIR

Construction season

Additional Factors to Consider

(continued)

5. Initial funding constraint
6. Life-cycle cost based on longterm performance
7. Traffic Control

Mill & Overlay vs. CIR & Overlay 93-AASHTO Design

3" Mill & 3" HMA

- Existing HMA (SN-0.2/inch)
- New HMA (SN-0.42/inch)
- Total SN-
- (3"*0.42)-3*0.2=0.66

3" CIR & 1.5" HMA

- 0.3-CIR (SN-0.3/inch)
- 0.42 New ACP (SN-0.42/inch)
- Total SN-
- (3*(0.3-0.2)+0.42*1.5=0.93

40% Increase in SN value

Cost Comparison

3" MILL & 3" OVERLAY

- 3" Milling-\$1.5/ Sq. Yd.
- 3" HMA- \$18/ Sq.Yd.
- Total cost for one mile (32' wide)= \$370 K

3" CIR & 1.5" OVERLAY

- 3" CIR-\$4.5
- 1.5" HMA- \$9/ Sq.Yd.
- Total cost for one mile (32' wide)= \$253K

5. Initial Funding Constraint (Nevada DOT Cost Comparison)

Category	ESALs	Strategy	Total structural number	Strategy Cost	Reduced Cost/ Mile	Change in SN
LOW	< 1 Million	2" Mill &fill	2"(0.35-0.18)= 0.34	625K	63%	(12%)
		3" CIR Double Chip Seal	3(0.28-0.18) =0.30	230K		
MEDIUM	> 1 Million < 3 Million	3" Mill 3" HMA	3"(0.35-0.18)=0.51	910K	37%	60%
		3" CIR 1.5" HMA	3" (0.28-0.18) +1.5" *0.35=0.82	570K		
HIGH	> 3 Million	3" Mill 6" HMA	(6")(0.35)-(3") (0.18)=1.56	1.82 M	28%	10%
		3" CIR 4" HMA	3(0.28-0.18) +4(0.35)=1.70	1.3 M		

Additional Factors to Consider

(continued)

5. Initial funding constraint
6. Life-cycle cost based on longterm performance
7. Traffic Control

6. Life-cycle Cost Analysis

Present Worth for Pavement Rehabilitation

State-of-the-Practice on CIR and FDR Projects NDOT, Nov. 21, 2005

Long-Term Performance 9-year Performance CIR and 2" Overlay Section, Reno, Nevada

Long-Term Performance 20-year Performance US-95 NV

Additional Factors to Consider

(continued)

5. Initial funding constraint
6. Life-cycle cost based on longterm performance
7. Traffic Control

7. Traffic Control

Extremely Important

Factors to consider:

- Day time vs. night time construction
- > ADT and type of traffic (cars vs. trucks)
- > Opening to traffic
- Intersections and other stop and go
 Access to local business

CIR on I-80 in Nevada

I-80 at Pequop

Agency: NDOT District 3 Contractor: Road & Highway Builders Subcontractor: Valentine Surfacing 2007-2008

Lake Almanor, Caltrans Project-2011

Recommendations

 > Agencies should consider adding HIR, CIR, and FDR rehabilitation strategies to their tool box
 > Start slowly and get contractors involved early
 > Continue improving the process

Conclusions HIR, CIR and FDR Meet the 3E Challenge

Sustainability Energy Use Per Tonne Of Material Laid Down Laydown Transport 800 Manufacture 680 700 Aggregate Binder 570 600 538 500 456 ENergy (MJN) 400 300 200 139 100 0 Hot-Mix Asphalt Emulsion-Based Hot In-Place Central Plant Cold In-Place Cold-Mix Recycling Recycled Hot-Mix Recycling with with 20% RAP Emulsion

Source: The Environmental Road of the Future, Life Cycle Analysis by Chappat, M. and Julian Bilal. Colas Group, 2003, p.34

Ministry of Transportation Ministère des Transports

20-Yr CIR Performance

\$600M Cost-Saving with CIR and FDR

Let's Create a Sustainable Future!

Sohila Bemanian, PE Parsons Transportation Group Carson City, Nevada Sohila.bemanian@parsons.com (775) 297-6515